智能加速实验室
智能加速实验室
主页
研究简介
研究团队
学术论文
招生指南
Article
Qft: Quantized full-parameter tuning of llms with affordable resources
Large Language Models (LLMs) have showcased remarkable impacts across a wide spectrum of natural language processing tasks. Fine-tuning …
Zhikai Li
,
Xiaoxuan Liu
,
Banghua Zhu
,
Zhen Dong
,
Qingyi Gu
,
Kurt Keutzer
引用
DOI
DilateQuant: Accurate and Efficient Diffusion Quantization via Weight Dilation
Model quantization is a promising method for accelerating and compressing diffusion models. Nevertheless, since post-training …
Xuewen Liu
,
Zhikai Li
,
Qingyi Gu
引用
代码
DOI
LLM Inference Unveiled: Survey and Roofline Model Insights
The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and …
Zhihang Yuan
,
Yuzhang Shang
,
Yang Zhou
,
Zhen Dong
,
Chenhao Xue
,
Bingzhe Wu
,
Zhikai Li
,
Qingyi Gu
,
Yong Jae Lee
,
Yan Yan
引用
代码
DOI
RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization
Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset …
Zhikai Li
,
Xuewen Liu
,
Jing Zhang
,
Qingyi Gu
引用
DOI
EDA-DM: Enhanced distribution alignment for post-training quantization of diffusion models
Diffusion models have achieved great success in image generation tasks through iterative noise estimation. However, the heavy denoising …
Xuewen Liu
,
Zhikai Li
,
Junrui Xiao
,
Qingyi Gu
引用
DOI
BinaryViT: Towards Efficient and Accurate Binary Vision Transformers
Vision Transformers (ViTs) have emerged as the fundamental architecture for most computer vision fields, but the considerable memory …
Junrui Xiao
,
Zhikai Li
,
Lianwei Yang
,
Qingyi Gu
引用
DOI
引用
×